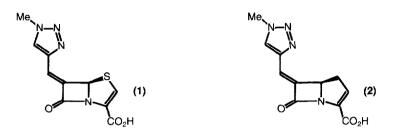

SYNTHESIS OF (5R) (E)-6-[(1-METHYL-1,2,3-TRIAZOL-4-YL)METHYLENE]-7-OXO-1-AZABICYCLO[3.2.0]HEPT-2-ENE-2-CARBOXYLIC ACID, A NOVEL CARBAPENEM DERIVATIVE, FROM 6-AMINOPENICILLANIC ACID

Steven Coulton* and Irene François

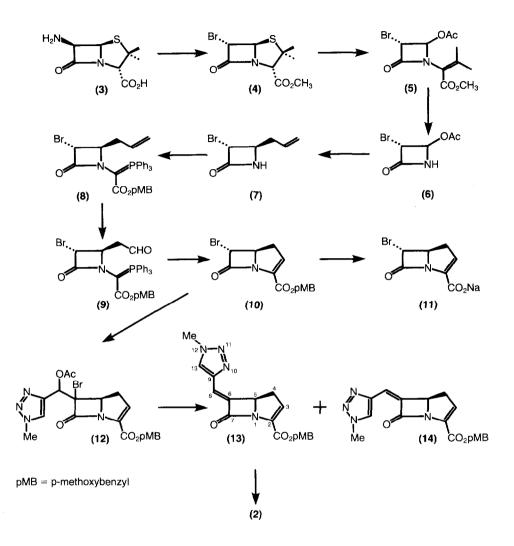
Beecham Pharmaceuticals, Research Division, Brockham Park, Betchworth, Surrey, RH3 7AJ, England.

Summary: The title compound has been prepared from 6-aminopenicillanic acid via the novel intermediate, p-methoxybenzyl (5R,6R) 6-bromo-7-oxo-l-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (10).


The ability of bacteria to produce β -lactamases poses a continuing threat to the clinical utility of β -lactam antibiotics. The past several years have witnessed the discovery of a number of naturally occurring and semi-synthetic β -lactam derivatives which inhibit these β -lactamase enzymes. They include clavulanic acid, sulbactam, the olivanic acids and the asparenomycins.¹

The alkylidene carbapenem derivatives, Asparenomycin A, B and C have been shown to exert their β -lactamase inhibitory effect by acylating the β -lactamase enzyme.² The acyl-enzyme complex thus formed is believed to be stable to subsequent hydrolytic breakdown, thereby disrupting the catalytic activity of the enzyme.

This, together with a recent report from these laboratories that the triazolylmethylene penem, BRL 42715 (1) is a potent inhibitor of both penicillinases and cephalosporinases,³ prompted us to incorporate the triazolylmethylene moiety into the carbapenem nucleus.


The great potential of 6-aminopenicillanic acid (6-APA) for the synthesis of non-classical β -lactams has been recognised on numerous occasions.⁴ We also have utilized this readily available, chiral starting material to prepare the triazolylmethylene carbapenem (2), via the $6(\underline{R})$ -bromocarbapenem (10).

Accordingly, 6-APA (3) was converted to the known methyl $6(\underline{S})$ -bromopenicillanate (4) by the method of John <u>et al</u>.⁵ Treatment with acetyl nitrate (1,2-dichloroethane, 5°C, 3h) and triethylamine (5°C, 4h) provided a diastereoisomeric mixture of 4-acetoxyazetidin-2-ones (5). This procedure was first reported by the Schering group⁶ for the preparation of 3-(1-hydroxyalkyl)-4-acyloxyazetidin-2-ones. Ozonolysis, followed by methanolysis then afforded the diastereoisomeric azetidinones (6) in 45% yield from (4).

The introduction of carbon substituents at the C-4 position of azetidin-2-one derivatives is well documented.⁷ Indeed, the diastereo-specific allylation of $3(\underline{R})$ -bromo- $4(\underline{R},\underline{S})$ -acetoxyazetidin-2-one (6) was achieved in 60% yield by the use of boron trifluoride etherate (1.2 equiv.) and allyltrimethylsilane (CH₂Cl₂, 20°C, 16h).^{7a} The trans β -lactam orientation in the product (7)⁸ $[\alpha]_D^{20}$ + 39.6° (c 1.0, CH₃OH) was apparent from the H₃-H₄ vicinal coupling constant of 1.7 Hz.

The $3(\underline{R})$ -bromo- $4(\underline{R})$ -allylazetidin-2-one (7) was then progressed to the bicyclic carbapenem (10) using the well established intramolecular Wittig cyclisation first reported by Woodward.⁹ Selective oxidation of the terminal double bond of phosphorane (8), prepared in 56% yield by condensation of (7) with p-methoxybenzyl glyoxalate,⁹ could be achieved by ozonolysis in ethyl acetate (-78°C, 6min) in the presence of trifluoroacetic acid (40 equiv.); the phosphorane group was protected by protonation.¹⁰ Reduction of the ozonide (PPh₃) followed by regeneration of the phosphorane with aqueous sodium hydrogen carbonate provided the aldehyde (9), which spontaneously cyclised to yield the crystalline p-methoxybenzyl (5<u>R</u>, 6<u>R</u>) 6-bromocarbapenem (10)¹¹ m.p. 104-105°C, [α]²⁰_D + 149° (c 1.0, CH₂Cl₂), in 64% yield. Lewis acid-mediated deprotection¹² of the ester (10) (i. 2.5 equiv. AlCl₃, anisole, CH₂Cl₂, -40°C, 10min; ii. Na₂HPO₄) afforded the sodium salt of (5<u>R</u>, 6<u>R</u>) 6-bromo-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (11) [α]²⁰_D + 93° (c 0.5, H₂O) (69% yield).

The bromocarbapenem ester (10) was elaborated to the triazolylmethylene carbapenem ester (13) by that procedure previously reported for the synthesis of the triazolylmethylene penem (1). 13

Sequential treatment of the bromocarbapenem (10) with lithium diphenylamide (THF, -78°C, 2min), 1-methyl-1,2,3-triazole-4-carbaldehyde¹⁴ (-78°C, 2min) and acetic anhydride (-78°C to 20°C over 20min) gave a diastereoisomeric mixture of acylated bromohydrins (12). Reductive elimination of this mixture (Zn, acetic acid, THF, 20°C, 30min) provided a 3:1 mixture of the (\underline{E}) - and (\underline{Z}) -triazolylmethylene carbapenem esters, (13) m.p. 115-117°C, $[\alpha]^{20}$ + 253° (c 1.0, CH₂Cl₂) and (14), which were separated by silica gel column chromatography [32% total yield from (10)]. The structural assignment of (13), especially the (E)-geometry of the C-6,8 double bond, was based on a comparison of its 1 H n.m.r. spectrum with that of (14). The 8-H vinyl proton of the (E)-isomer (13) appears at \$7.05, downfield from that of the (Z)-isomer (14) ($\delta 6.88$), due to the anisotropic deshielding effect of the β -lactam carbonyl on this proton (solvent CDCl₃). In the (Z)-isomer (14) it is the triazole proton that is deshielded by the 3-lactam carbonyl and appears at \$8.76, downfield from that of the (E)-isomer, which appears at \$7.64.

Finally, deprotection of the ester (13) by reaction with AlCl3 in anisole/CH₂Cl₂l₂ provided the sodium salt of (5R) (E)-6-[(1-methyl-1,2,3triazol-4-y1)methylene]-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (2) [α]²⁰ + 224⁰ (c 0.25, H₂O) in 68% yield, after Diaion HP 20 column chromatography and lyophilisation.

Neither the bromocarbapenem (11) nor the triazolylmethylene carbapenem (2) displayed any significant antibacterial or β -lactamase inhibitory activity.

References and Notes

1.	For recent reviews see: a) J.H.C. Nayler in 'Proceedings VIIIth Inter-
	national Symposium on Medicinal Chemistry, Vol.2, pp33-48, Eds.
	R. Dahlbom and J.L.G. Nilsson, Swedish Pharmaceutical Press, Stockholm,
	1985; b) A.G. Brown, Pure Appl. Chem., 1987, 59, 475.
2.	K. Murakami, M. Doi, and T. Yoshida, J. Antibiotics, 1982, 35, 39.
з.	I.S. Bennett, G. Brooks, N.J.P. Broom, K. Coleman, S. Coulton,
	R.A. Edmondson, D.R. Griffin, J.B. Harbridge, N.F. Osborne,
	I. Stirling-François, and G. Walker, Abstract 118, 'Proceedings of the
	28th Interscience Conference on Antimicrobial Agents and Chemotherapy,
	Los Angeles, U.S.A., 1988.
4.	For a review see 'Chemistry and Biology of B-Lactam Antibiotics,' Vol.2,
	Eds. R.B. Morin and M. Gorman, Academic Press, 1982.
5.	D.I. John, N.A. Tyrrel, and E.J. Thomas, Tetrahedron, 1983, 39, 2477.
6.	M. Steinman and Y.S. Wong, European Patent Application 0 131 811
	(Schering Corporation), 1985.
7.	For example: a) G.A. Kraus and K. Neuenschwander, J.C.S. Chem. Commun.,
	1982, 134; b) R.J. Reider, R. Rayford, and E.J. Grabowski, Tetrahedron
	Lett., 1982, 23, 379; c) R.P. Attrill, A.G.M. Barrett, P. Quayle,
	J. van der Westhuizen, and M.J. Betts, J. Org. Chem., 1984, 49, 1679.
8.	Previously prepared from 3(S)-bromo-4(R)-chloroazetidin-2-one using
	tetraallyltin; A. Martel, J-P. Daris, C. Bachand, M. Ménard, T. Durst,
	and B. Belleau, Can. J. Chem., 1983, 61, 1899.
9.	R. Scartazzini, H. Peter, H. Bickel, K. Heusler, and R.B. Woodward,
	Helv. Chim. Acta., 1972, 55, 408.
10	A T.C. Download W.M. Dishister D.M. Dishister D.G. Contact 1

- 10. A.J.G. Baxter, K.M. Dickinson, P.M. Roberts, T.C. Smale, and R. Southgate, J.C.S. Chem. Commun., 1979, 236.
- 11. All new compounds had satisfactory microanalytical and/or spectroscopic data.
- 12.
- M. Ohtani, F. Watanabe, and M. Narisada, J. Org. Chem., 1984, 49, 5271. N.F. Osborne, N.J.P. Broom, S. Coulton, J.B. Harbridge, M.A. Harris, I. Stirling-François, and G. Walker, J.C.S. Chem. Commun., 1989, 371. R. Hüttel and A. Gebhardt, <u>Annalen</u>, 1947, <u>558</u>, 34. 13.
- 14.

(Received in UK 4 April 1989)